
Investigating the benefits of Composable Emulation:
Styx Emulator as a Case Study

Jordan Moore1, Emilie Taylor2, Ramesh Balaji3,
Matthew Revelle4, Kevin Orr2

Styx Emulator1, Kudu Dynamics,2 NSF REU student at Montana State University,3 Montana State University4

Styx Emulator
The Styx Emulator (Styx) is a new modular emulation framework purpose built for de-
bugging target programs in non-standard architectures.

Included Features
Built-in fuzzer, gdbserver, and memory error detection
Interrupt data tracing
High fidelity (and cross emulator) tracebus
Ghidra interoperability plugins
Swap out any component for your own (including execution backends)
Concurrent emulation, fuzzing, debugging, and tracing of different architectures

Styx can be used to build tailored emulation through composition, without burdening
users with emulation boilerplate. Styx can utilize existing Ghidra [2] processor models
which describe the architecture and how it should be translated to the P-Code interme-
diate representation [3].

Emulation Framework Features
Comparison of emulation frameworks and their capabilities

Feature Styx QEMU/Unicorn Icicle-Emu
License BSD-2 GPL-2 MIT or Apache2

Language Rust C Rust

Intended Usecase Embedded + DSP
Bug-finding

General OS
Emulation

Linux usermode
Bug-finding

Multi-processor Native No Maybe
Fuzzing Customizable Old fork Semi-customizable

Instruction
Execution Configurable QEMU Tcg SLEIGH +

Cranelift JIT

User Configurable All core
interfaces No No

New Target Support Checklist process Good Luck Possible

Case Study 1: Modular Component Development

New Architecture Support
Using Styx, an emulation developer was able to add SuperH support to the P-Code back-
end and Styx proper in a matter of hours. This resulted in the team finding a previously
undiscovered bug in the target system.

External Device Modeling
A common pattern is to use Styx to create a representative digital twin of the system,
focusing on the dataflow between the application processor and the analog data copro-
cessor. These devices commonly have components that perform bespoke tasking or data
sensing. Using any programming language with a gRPC library, a developer can write a
model that simulates the behavior of external devices affecting target code or replace in-
tree models that require user tailoring.

External Tool Interoperability
Using the previous gRPC technique the Styx team was able to model a high fidelity IMU
and provide visualizations and live data feedback to test and evaluate analog data flowing
through the emulated IMU microcontroller.

Motivations for Composable Emulation
Several insights were discovered from past experiences building and using digital twins
and emulators:

Emulation is not the end goal
Testing, debugging, etc. is the end goal
Emulation is an enabler of that goal

Making digital twin emulators takes time
If it takes too long to produce a digital twin, a simpler one-off tool that implements
a subset of the desired functionality will replace it
The less effective one-off replacement will accumulate tech debt

You don’t always need full hardware support
No need to support hardware interrupts if you only need user-mode emulation
No need to support syscalls if you only need to test a single simple function

Re-tooling or building one-off tools is not scalable
Leads to developer burnout
Accumulate tech debt as focus changes
Each new tool adds a new single-point-of-failure to the person who made it
Each use case is different, and may focus on different specifics

Design and Architecture of a Composable Emulator
These interfaces
make up our
implementation
of composable
emulation. All of
these interfaces
can be tailored by
the user at will.

Utilize any
pre-made
code via the
interfaces
Extensions
communicate
and interact
with
machines
Compose or
customize
pieces as
needed

CPUBackend CPUState

MMURef Event Controller

Peripherals Devices

MMU + TLB Plugins

Tr
ac

eb
us

IP
C

In
te

rc
on

ne
ct

ProcessorCore [0..N]

Processor [0..M]

Machine

Acknowledgments
Styx Emulator is Copyright of Kudu Dynamics LLC, a Leidos Company. This research was partially supported by the National

Science Foundation under award number 2243010 and DARPA under award HR001125C0014. The views, opinions and/or

findings expressed are those of the author and should not be interpreted as representing the official views or policies of the

Department of Defense or the U.S. Government.

Case Study 2: Rapid Instruction Set Architecture (ISA)
Support

Tool-assisted ISA support
From past experience adding new ISA support in Styx, we have found that Styx saves
significant time relative to other frameworks by providing the following tools:

Target support checklist to guide the overall process
Abstracted memory MMU/TLB model that brokers access to code and data
Built-in P-Code execution backend built to be extended by any Ghidra architecture
definition
Deterministic abstracted code execution loop
Ability to accurately execute P-Code instructions
Common functionality for manipulating and using registers
Hooks to support P-Code’s CALLOTHER instruction that requires special functionality
Hooks for special register reads and writes

Hexagon Specifics
The Qualcomm Hexagon ISA is a VLIW (very long instruction word) architecture [1]. In-
structions are contained within “packets” and instructions in the same packet are executed
in parallel. Hexagon is the first VLIW architecture supported by Styx.

While the modular design of Styx allowed Hexagon support to succeed in a matter of
weeks, fitting in packet-based semantics to a serial execution pipeline came at great cost
to performance and maintenance overhead that is not sustainable. The final revision
of Hexagon support culminated in a new Request For Comments (RFC) planning for
a packet-based instruction executor abstraction under the current CpuBackend currently
being implemented.

Conclusion and Future Work
Styx is a first-of-its-kind emulation framework, abstracting over multiple instruction
emulation backends, and providing builtin tracebus, plugins, and programmable I/O.
allowing users to get a level of introspection and control over the target environment not
available in other emulation frameworks.

In the future, Styx will focus on improving the multi-emulator capabilities, and creating a
robust emulation development and debugging experience centered around the Styx Em-
ulator. Additionally Styx will investigate modular abstractions centered around instruction
decoding to enable integration of poorly supported architectures in a manner requiring
less work from users.

References
[1] Lucian Codrescu, Willie Anderson, Suresh Venkumanhanti, Mao Zeng, Erich

Plondke, Chris Koob, Ajay Ingle, Charles Tabony, and Rick Maule.
Hexagon dsp: An architecture optimized for mobile multimedia and communications.
IEEE Micro, 34(2):34–43, 2014.

[2] National Security Agency.
Ghidra software reverse engineering framework.
https://github.com/NationalSecurityAgency/ghidra.

[3] Nico Naus, Freek Verbeek, Dale Walker, and Binoy Ravindran.
A formal semantics for p-code.
In Akash Lal and Stefano Tonetta, editors, Verified Software. Theories, Tools and
Experiments., pages 111–128, Cham, 2023. Springer International Publishing.

github.com/styx-emulator 50th USENIX 2025, Seattle, USA — August 13–15, Distribution A — Approved for Public Release, Distribution Unlimited discord.gg/styx-emulator

https://github.com/NationalSecurityAgency/ghidra
https://github.com/styx-emulator
https://discord.gg/styx-eulator

