
Jordan Moore (lockbox)

Styx Emulator
Public Release Presentation and Roadmap

1



2

The Vision

● A uniform way to programmatically emulate and model systems

● A single emulation and modeling API to build with

● A unification of tools that already exist so you don’t lose the work 
already invested

● A flexible emulator framework built to be tailored by users, not just 
developers



3

The Vision (cont.)
● Connect a … to an emulator

○ Physics Simulator / MATLAB

○ Fuzzer / GNURadio

○ Physical Hardware / Sensor

○ $custom_thing

○ Another emulator



4

The Vision (cont.)
● Connect a … to an emulator

○ Physics Simulator / MATLAB

○ Fuzzer / GNURadio

○ Physical Hardware / Sensor

○ $custom_thing

○ Another emulator

● Using the same tool



5

The Vision (cont.)
● Connect a … to an emulator

○ Physics Simulator / MATLAB

○ Fuzzer / GNURadio

○ Physical Hardware / Sensor

○ $custom_thing

○ Another emulator

● Using the same tool

● Be able to add custom support

○ New Architecture

○ New Chip

○ New Peripheral

○ $custom_thing



6

The Vision (cont.)
● Connect a … to an emulator

○ Physics Simulator / MATLAB

○ Fuzzer / GNURadio

○ Physical Hardware / Sensor

○ $custom_thing

○ Another emulator

● Using the same tool

● Be able to add custom support

○ New Architecture

○ New Chip

○ New Peripheral

○ $custom_thing

● Quickly, every time



7

Open Source Emulator Family Tree



8

Open Source Emulator Family Tree



9

Open Source Emulator Family Tree



1
0

Open Source Emulator Family Tree



1
1

Challenges with Prior Solutions

● Not user configurable
● Licensing
● Challenging to support new ISA’s
● Old forks of different tools
● Old forks of old forks of different tools
● Integration with other tools is “fun”
● abort();



1
2

Working With QEMU

● Adding things to QEMU is a pain
● QEMU is built to run software
● QEMU is rigid
● How do you model harvard memory in QEMU?
● No easy way to programmatically interface with QEMU I/O
● What if your SoC has multiple processors?



1
3

Old Forks of Tools

● “Full System Emulation” (Skips all hardware initialization)
● “Framework for oneoff target”
● Research contributions are “combining two incompatible QEMU forks”
● Some forks (panda-re, qiling etc.) get mild maintenance, locked on old 

QEMU
● 10yo QEMU checkout

https://srlabs.de/blog/hexagon-fuzz-full-system-emulated-fuzzing-of-qualcomm-basebands


1
4

abort();



1
5

Open Source Emulator Family Tree



● Composable Emulator
● Library designed to be TAILORED to YOUR use case
● Purpose built for DEBUGGING and building SYSTEM UNDERSTANDING
● Publicly Released on 23 September, 2025
● A collection of tools and infrastructure to enable RAPID development 

of emulators
● A new open source collaboration project

What is the Styx Emulator



1
7

The Vision (Revisited)

● A uniform way to programmatically emulate and model systems

● A single emulation and modeling API to build with

● A unification of tools that already exist so you don’t lose the work 
already invested

● A flexible emulator framework built to be tailored by users, not just 
developers



1
8

Table of Contents

● whoami

● Where we’re at (And when you’d want to use Styx)

● Community Feedback

● Current development

● Upcoming development

● Other fun ideas



1
9

whoami

● lockbox
● Army for a few years
● CTF for a few more
● Software Engineer out of spite
● Initial author/co-maintainer of Styx Emulator
● Someone who wants better debugging tools!

Day job is Emulation + Environments development at Zealot Labs



2
0

Styx: at the beginning

● Use UNICORN for common target set (ARM, PPC, etc.)

● Use PCODE interpreter for the uncommon targets (DSPs, CoProcessors)

● Build up initial Event Controller + Peripheral models

● Use gRPC for all network programming

● Create code generation tools wherever possible (from C SDK’s, etc.)

● Initial focus was bug finding (now “debugging”)



2
1

When to use the Styx Emulator

● When QEMU doesn’t work / “Would take a long time in QEMU”
● Working with CoProcessors or DSPs
● When you need to DEBUG rather than run target programs
● Need multiple emulators to communicate
● Need programmatic control of peripherals
● You need to integrate emulation with other tools
● Fidelity and introspection is more important than speed



2
2

Where we’re at
● Examples

● Extensive API Documentation

● Programmatic Peripherals

● Unified API

● Growing Target Support

● Unified Configuration

● Extensions and Plugins



2
3

Rust Minimal Example



2
4

Python Minimal Example



2
5

Embed In Python Integration Tests



2
6

Rust Firmware/OS Integration Tests



2
7

Add New Target or ISA Support

● Documented support checklists:
○ New Target: 

■ https://docs.styx-emulator.org/user/adding_a_processor.html
○ New ISA: 

■ https://docs.styx-emulator.org/user/new_architectures.html
■ https://docs.styx-emulator.org/user/new_architectures_pcode

.html

Keep a lookout for new blog post walkthroughs!



2
8

Current Target Support

● ISA’s:
○ ARM32/64
○ MIPS32/64
○ PPC32
○ Blackfin
○ SuperH/2/3/4
○ Hexagon

Look in the repository / documentation site for specific pre-built processors

● Peripherals:
○ UART
○ I2C
○ Ethernet
○ SPI
○ Timers

● Devices:
○ ADC
○ DAC
○ SPI Flash
○ SDMMC
○ RTC



2
9

Built in Fuzzer



3
0

Built in Fuzzer



3
1

Built in Debugger



3
2

Built in Debugger



3
3

Interact with Packaged Devices



3
4

Multi-Emulator Tracebus

● Tracebus allows some cool 
things

● Compile out trace 
instrumentation you don’t use

● Interrupt data Event

● Concurrent emulator support



3
5

External Tools Integration

● MVP Web UI to manage emulations and traces

● MVP Ghidra interop and data streaming

● Live tracebus visualizations

● Communicate with peripherals via gRPC (protobuf over the wire)
enabling custom development in any programming language



3
6

Community Feedback

● Targets used (SuperH, ARM32)

● “this thing is amazing. Immediate automatic first choice for me”

● Why not renode?

● Make it easier to create new components

● Publish on package registries when?



3
7

Community (New Components)



3
8

Current Development

● Qualcomm + Android progress

● User Documentation

● Debugger frontend

● Unified Configuration



Current Development (Qualcomm)
● Recently merged

● Specific SoC support coming soon

● Peripherals and booting modem RTOS + Linux soon

● Longest ISA TTS “Time to Support” (3 months)

● Most complicated ISA to date



4
0

Current Development (Documentation)

● Merge Request in Progress

● Adds support for generating new components to expedite development

● Updates specific documentation



4
1

Current Development (Debugger)

● Unifying debug access via a single API

● Planning an integration with BinaryNinja debugger

● Still in the planning phase

● Using the in-tree protobuf definitions as a starting point



4
2

Current Development (Unified Configuration)
“One YAML to rule them all”



4
3

Upcoming Development

● Arm32 + Arm64 hypervisor support
● Unified interfaces for instruction execution backend
● Android phone emulators
● Tms320c2xxx
● Remote emulation orchestration
● Device-tree driven emulation (“automatic emulation” 😂 )



4
4

Some Research Ideas

● Make trace analysis great again
● Time travel
● Generic support for cross-emulator time synchronization
● Fast multi-host architecture software TLB + MMU implementation
● Something better than SLEIGH (but lowers to SLEIGH for compatibility)
● Compile time tunable instruction decoding (via zig?)
● Emulation IR around webassembly
● Styx-simulation api to create a generic simulation API for physics 

simulators + plugins



4
5

Other Fun Ideas

● Styx-tcg backend
● Tms320c67xx
● Complete stm32 family support
● Complete AVR8/16/32 family support
● Vscode integration
● Zephyr + pigweed integration
● Support quadcopter development projects with emulators (eg. 

betaflight etc.)
● Styx-machines library of reusable machines for people
● Formal gnuradio blocks + plugin for Styx as a sink / source



4
6

Summary

● The Styx Emulator is a new USER configurable emulator framework
● Easy to extend
● Easy to integrate with external tools
● Easy to customize for YOUR use case
● Focusing on Embedded and DSP platforms



Links

Official Repository: 
Official Twitter/X: 
Official Mastodon: 
Official Docs site:       
Community Discord: 

Personal:
Email: 
Github: 
Blog: 

Slides:

https://github.com/styx-emulator
https://x.com/styx_emulator
https://infosec.exchange/@styx_emulator
https://docs.styx-emulator.org
https://discord.gg/styx-emulator

lockbox@struct.foo
https://github.com/lockbox
https://stumbl.ing



4
8


